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 ALTERNATIVE METHODS FOR DEALING WITH NONNORMALITY
 AND HETEROSCEDASTICIT Y IN PALEONTOLOGICAL DATA

 STEVEN J. HAGEMAN

 Department of Geology, University of Illinois, Urbana 61801

 ABsTRAcr-Although numerical methods are highly useful in paleontological studies, potential problems arise with application of
 parametric statistical methods to paleontological data. Most common statistical tests assume data are normally distributed and that
 multiple populations have equal variances (homoscedasticity). Paleontological data frequently do not satisfy these assumptions,
 thereby affecting results of tests and potentially misleading scientific interpretations. Nonparametric tests should be used when
 assumptions of parametric tests are violated. Normal scores tests, which utilize expected normal deviates (rankits) substituted for
 original data, are the most powerful nonparametric tests. Despite their potential utility, normal scores tests have received little
 attention, primarily because of difficulties encountered with rankit conversion.

 Recent advances in microcomputer technology provide viable methods for rankit conversion, thus making normal scores tests
 accessible for routine application. Normal scores tests provide a practical method of dealing with nonnormality and heteroscedasticity
 common in paleontological data.

 INTRODUCTION

 NUMERICAL METHODS provide valuable tools to paleontolo-
 gists; however, parametric statistical methods bear some

 potential pitfalls. Paleontological data frequently do not satisfy
 parametric assumptions of normality and homoscedasticity
 (equal variance). Violation of these assumptions affects results
 of statistical tests, which in turn influences scientific conclusions.
 Sample size also strongly influences the results of statistical tests.
 Therefore, paleontologists must exercise caution when using
 these techniques. The purpose of this paper is to draw attention
 to these well-known but often ignored problems and to review
 practical but historically obscure methods for dealing with non-
 normality and heteroscedasticity. Morphometric data are used
 in examples in this paper, but principles discussed apply to a
 wide variety of paleontological (systematic, biostratigraphic, pa-
 leoecologic, and biogeographic) and geological data.

 PARAMETRIC ASSUMPTIONS

 Most common statistical tests are based on very specific as-
 sumptions: 1) objects for study are chosen at random (e.g., re-
 searcher does ne: onsciously or subconsciously pick only the
 large specimens and ignore small ones); 2) outcome of tests are
 independent (i.e., after a measurement is taken, one cannot pre-
 dict whether the next observation will be larger or smaller); 3)
 obs vations are normally distributed (Gaussian distribution);
 and 4) when two or more groups are involved, they have equal
 variances (homoscedasticity). Note that these assumptions do
 not apply only to sophisticated numerical methods; they are
 made any time the mean and standard deviation are calculated
 for a set of observations and employed in a test. With careful
 data collection [meticulous data acquisition, enhanced by digital
 devices (Fink, 1990)], the first two assumptions can be satisfied
 in most paleontological studies, but compliance with the other
 assumptions (normality and homoscedasticity) is dictated by
 the distribution of the data themselves. The latter assumptions
 are familiar to anyone acquainted with statistical methods (So-
 kal and Rohlf, 1981), but how valid are they for most paleon-
 tological data, and what are the scientific consequences of vi-
 olating them? These questions are seldom addressed in the
 paleontological literature. The importance of sample size con-
 siderations has also been neglected (see Significance Levels and
 Scientific Conclusions section, and Foster and Kaesler, 1988).

 The normal distribution provides a model for random error.
 The idea of randomness of errors is attractive, and many sta-
 tistical tests have been developed based on normal distribution.

 Many other distributions, however, exist (e.g., beta, Cauchy,
 gamma, uniform, Poisson, exponential, hypergeometric) that
 have basis in theoretical models. Statistical tests have been de-
 veloped that employ the properties of these distributions; for
 example, the hypergeometric distribution provides a model of
 sampling without replacement, which is appropriate for ana-
 lyzing spatial distributions where no two organisms can occupy
 the same space on a grid. Ideally, one should recognize the
 theoretical model that describes the situation believed to exist
 for a given study (often the normal distribution), collect data
 and compare its distribution against the proper distribution,
 and, if the data fit the model satisfactorily, continue with the
 appropriate statistical test. It is important to ask why paleon-
 tological data should fit any of these models, let alone the normal
 distribution.

 Morphological characters are often controlled by biological
 and physical constraints rather than random processes. Thresh-
 olds are encountered in morphological characters. It is common
 to find minimum sizes for characters in species, below which
 structures presumably are unable to perform their function, but
 above which the size is less constraining, resulting in a skewed
 but somewhat irregular distribution. Other threshold effects can
 also be observed. In fact, plausible biological explanations exist
 for many distributions observed in nature that do not fit simple
 mathematical models (e.g., different ontogenetic histories due
 to variable environmental pressures). Data resulting from these
 factors are often called "messy," and researchers tend to apol-
 ogize for their nonnormality. However, accurately collected data
 are what they are. Paleontologists often deal with systems that
 are so complex that mathematical models have not been de-
 veloped to account for them.

 In the past, people have dealt with nonnormality and heter-
 oscedasticity in a variety of ways. Some workers ascribe to the
 philosophy that, unless there is some a priori reason to believe
 otherwise, the assumption of normality is justified. Others sim-
 ply ignore the problem and hope for the best; still others fer-
 vently warn that the risk that assumption violations will in-
 validate results is very real, and that measures should be taken
 regularly to guard against such mistakes.

 A common method of dealing with nonnormality is to trans-
 form the data (Sokal and Rohlf, 1981; Zar, 1984). The influence
 of size factors on morphological data (e.g., a population that
 contains a range of ontogenetic growth stages) frequently results
 in log-normal distributions (when variance is proportional to
 the mean). It is therefore common practice to make logarithmic
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 TABLE I-Steps in the procedure for converting original data to rankits.
 Rankit values in column three are from Harter (1961, table 1).
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 FIGURE --Standard normal distribution, with rankit values for N = 6
 observations.

 transformations prior to analyzing data. Other transformations
 such as square root, inverse, and arcsine are also commonly
 employed to adjust for nonnormality. Effects of transformations
 are not always clear, however. For example, what are the bio-
 logical implications if a character is not significantly different
 between two species when original data are used, but is signif-
 icantly different when the arcsine transformation is employed?
 Although there is nothing sacred about an ordinal scale, prob-
 lems arise when different transformations are required for mul-
 tiple populations under comparison.

 When parametric assumptions are not satisfied or when there
 are too few observations to satisfactorily evaluate the distri-
 bution, statisticians advocate use of nonparametric or distri-
 bution-free tests (e.g., Mann-Whitney and Kruskal-Wallace
 tests). Nonparametric tests do not use population parameters
 such as mean and standard deviation, and distribution-free tests
 do not make assumptions about the specific type of distribution
 of the data [see Bradley (1968), Marascuilo and McSweeney
 (1977), Conover (1980), and Zar (1984) for reviews of tradi-
 tional nonparametric methods]. These tests usually deal with
 the rank-order of data, which allows for manipulation of data
 collected from imperfectly (unacceptably) calibrated measure-
 ment scales or when only count or rank data are available.
 Nonparametric and distribution-free tests share some disad-
 vantages however; they are not as powerful as their parametric
 counterparts when distributions are approximately normal and
 homoscedastic (Bradley, 1968; Conover, 1980). Although the
 mathematics involved in nonparametric and distribution-free
 tests is relatively simple, bookkeeping involved in calculations
 is often tedious and time consuming. In addition, the wide va-
 riety of existing nonparametric tests has not been readily avail-
 able in computer statistical packages.

 A relatively new method for dealing with nonnormality and
 heteroscedasticity involves calculating standard errors and con-
 fidence limits for parameters directly from observed distribu-
 tions. This procedure, known as bootstrapping (Effron and Tib-
 shirani, 1986), is based on iterative sampling of parameters from
 the observed distribution. The utility of the bootstrap method
 has been demonstrated for paleontological studies in analyses
 of time-ordered evolutionary data (e.g., Gilinsky and Bambach,
 1986) and morphometric analyses (Plotnick, 1989). The pro-
 cedure, however, is relatively new and applications are currently
 being developed. As procedures become standardized, bootstrap
 methods will no doubt play a greater role in paleontological
 studies.

 1.

 Original
 data

 6.0
 7.5
 3.2
 4.7
 8.1
 2.0
 5.1
 6.6
 5.1
 8.7

 2.
 Sorted

 2.0
 3.2
 4.7
 5.1
 5.1
 6.0
 6.6
 7.5
 8.1
 8.7

 3.
 Rankits
 N= 10

 - 1.53875
 -1.00136
 -0.65606
 -0.37576
 -0.12267

 0.12267
 0.37576
 0.65606
 1.00136
 1.53875

 4.
 Corrected
 for ties

 -1.53875
 -1.00136
 -0.65606
 -0.24921
 -0.24921

 0.12267
 0.37576
 0.65606
 1.00136
 1.53875

 5.

 Original
 order

 0.12267
 0.65606

 -1.00136
 -0.65606

 1.00136
 -1.53875
 -0.24921

 0.37576
 -0.24921

 1.53875

 Two other, less well-known, methods for dealing with non-
 normality and heteroscedasticity are: 1) empirically testing ef-
 fects of violations of the assumptions of parametric tests; and
 2) using normal scores tests. The rest of this paper addresses
 these two methods. Both use a statistic known as a rankit, of
 which it is helpful to have an understanding.

 RANKITS

 A rankit is the expected value of the Rth smallest observation
 in a sample of size N drawn from a standard normal distribution
 (Ipsen and Jerne, 1944). This can be better understood with a
 graphical explanation. An empirical approximation of a rankit
 can be obtained as follows: first, a number of observations (say
 six) are taken randomly from a standard normal population (a
 population with a mean of zero and standard deviation of one)
 and the observations are ranked one to six, from smallest to
 largest. If this procedure is repeated many times, the average of
 all the smallest observations provides an approximation of the
 rankit value corresponding to rank-order of one. From Rohlf
 and Sokal (1981, table 27), the rankit value corresponding to a
 rank-order of one from a population of six is - 1.27 (Figure 1).
 The average of all the second smallest observations approxi-
 mates the rankit corresponding to the rank-order two (-0.64),
 and the average of the third smallest to the rank-order three
 (-0.20). Note that rankit values are symmetrical about the me-
 dian, with only a change in sign (Figure 1).

 Rankits can be considered a normalization of ranks. In other
 words, the rankit for R = 1 (rank-order one) and N = 6 (number
 of observations) is the expected value for the smallest of six
 random samples from a standard normal distribution. Rankits
 are also known as normal-order equivalents, order-statistics,
 expected normal scores, and normalized ranks.

 Rankits can be substituted for original data. Rankit substi-
 tution, in effect, converts a population into its equivalent stan-
 dard normal distribution. The procedure for rankit substitution
 is illustrated in Table 1. Data are sorted from smallest to largest.
 Rankits for the appropriate number of observations are then
 arranged in order next to the sorted data. Corrections are made
 for tied values by averaging rankits over the spanned range. For
 example, in Table 1 values of 5.1 are present in the fourth and
 fifth rank-order position, thus the average of the fourth and fifth
 rankits (-0.2492) is placed in both of these positions. Rankits
 are substituted for original data and reordered based on the
 sequence of the original data. Column 5 in Table 1 represents
 the equivalent standard normal distribution of the original data
 in column 1. Rohlf and Sokal (1981, table 27), provided a table
 of rankit values to three digits for N = 1 to N = 20 and two
 digits for N = 21 to N = 50; and Harter (1961, table 1) provided
 a table of rankit values to five digits for N = 1 to N = 100, and
 includes some entries up to N = 400.
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 Longitudinal
 Section Obverse Surface

 FIGURE 2 - Longitudinal section and obverse surface of typical fenestrate
 bryozoan, illustrating location of morphometric characters used in
 examples (DBC = distance between branch centers, WF = width of
 fenestrule, DN = diameter of node, CD = autozooecial chamber
 depth, and RA = reverse wall budding angle).

 It is important to note that rankit substitution is not analogous
 to a logarithmic or arcsine transformation designed to "im-
 prove" the normality of the data. It is a one-way substitution;
 original values cannot be obtained from rankit values.

 TESTING EFFECTS OF VIOLATIONS OF ASSUMPTIONS

 Rankits can be used empirically to test effects of violating
 assumptions of parametric tests: normality and homoscedastic-
 ity (Ghent, 1971). This is done by first performing a parametric
 statistical test using original data, then performing the same test
 using data that have been converted to rankits. If data are orig-
 inally perfectly normally distributed, results of the two tests will
 be nearly identical. Any difference between the results is due to
 the effects of nonnormality or heteroscedasticity.

 The following is an example of this procedure. Unpaired Stu-
 dent's t-tests are performed to determine if significant differ-
 ences exist in five morphometric characters between two species
 of fenestrate bryozoans (characters illustrated in Figure 2, and
 defined in Table 2). It is important to note that it is known a
 priori that some difference exists between the two populations
 (see Significance Levels and Scientific Conclusions section). For
 character DBC (distance between branch centers) the probability
 that the two species have the same branch spacing is 0.0427
 (4.27%), which is deemed significant using a strict a = 0.05
 significance level. A second series of t-tests are performed using
 rankits substituted for the original data [rankit values for N =
 24 are obtained from Harter (1961, table 1) and corrected for
 ties]. With rankits, the probability that the two species have the
 same branch spacing is 0.0537 (5.37%). In this case, the effect
 of nonnormality or heteroscedasticity is to increase the signif-
 icance (decrease probability of null hypothesis being true).

 It is important to note that effects of nonnormality or het-
 eroscedasticity are not predictable; sometimes significance is
 increased, other times it is decreased, and probabilities are al-

 TABLE 2-Two-sample comparisons of means of five morphometric
 characters of fenestrate bryozoans (DBC = distance between branch
 centers, WF = width of fenestrule, DN = diameter of node,
 CD = autozooecial chamber depth, and RA = reverse wall budding
 angle). Asterisk indicates changes in scientific conclusions based on
 a strict 0.05 significance level.

 Rectifenestella tenuissima vs. Rectifenestella tenax
 N= 24 N= 24

 Nonnorm and
 heterosced.

 P of P using effect on
 Character Student's t Rankits significance

 DBC 0.0427 0.0537 Increased*
 WF 0.0028 0.0040 Increased
 DN 0.0002 0.0001 Decreased
 CD 0.0507 0.1196 Increased
 RA 0.0676 0.0652 Decreased

 tered by different magnitudes (Table 2). In one case (highlighted
 with an asterisk), effects of violations of assumptions of para-
 metric tests influence scientific conclusions when a strict a =

 0.05 level of significance is used.
 This procedure of directly testing effects of violations of as-

 sumptions of parametric tests, illuminates damage done by ig-
 noring nonnormality and heteroscedasticity (Ghent, 1971). If
 probabilities obtained with original data are already highly sig-
 nificant and the effect of violations is to decrease significance
 (i.e., raises the probability of the effect occurring at random),
 then one can be confident of the original conclusions (characters
 DN and RA in Table 2). If, however, the effect is to increase
 significance of data that are only marginally significant in the
 first place (i.e., decreases the probability of the effect occurring
 at random), then caution should be applied to interpretations
 (character DBC in Table 2).

 Why should one not simply omit the step using original data
 and analyze only data converted to rankits? Indeed, Fisher and
 Yates (1938) proposed this procedure as a method of dealing
 with nonnormally distributed data prior to the development of
 many nonparametric methods. The problem is that although
 test statistics obtained using rankits are close enough to provide
 information about general effects of violations of assumptions
 of parametric tests, the test statistics are not distributed exactly
 the same as those derived from original data (Bradley, 1968, p.
 148). Statistical tests have, however, been developed that are
 based on the distribution of rankits, and these are called normal
 scores tests.

 INTRODUCTION TO NORMAL SCORES TESTS

 Normal scores tests are a family of distribution-free tests in
 which normal deviates (rankits) are substituted for original data.
 Many normal scores tests have been developed. Normal scores
 counterparts exist for all common parametric tests (Table 3).

 The relative power of statistical tests (ability to reject the null
 hypothesis) can be compared by several methods. The asymp-
 totic relative efficiency (A.R.E.) is one of the most common
 benchmarks for comparing the power of a nonparametric sta-
 tistical test with its parametric counterpart. Normal scores tests
 are the most desirable nonparametric tests because they have
 asymptotic relative efficiencies of one or greater (Bradley, 1968;
 Marascuilo and McSweeney, 1977; Conover, 1980; Rock, 1988).
 This means that when data are normally distributed, normal
 scores tests will provide the same results as equivalent para-
 metric tests, but when parametric assumptions of normality and
 homoscedasticity are violated, the power of normal scores tests
 increases greatly. When data are normally distributed, other
 parametric tests have A.R.E. values of less than one (Bradley,
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 TABLE 3-Common parametric tests and their normal scores and traditional nonparametric test equivalents.

 Parametric tests Normal scores tests Traditional nonparametric tests

 One-sample t-test Van Eden test Wilcoxon signed rank test
 Paired t-test Van Eden test Wilcoxon signed rank test
 Unpaired t-test Terry-Hoeffding test Mann-Whitney test
 F-test Klotz test Siegel-Tukey test
 One-way ANOVA Van der Waerden test Kruskal-Wallace test
 Post-hoc comparison of means Conover, 1980 Multiple range test
 Correlation coefficients Bradley, 1968 Spearman's rho/Kendal's tau

 1968); the A.R.E. values of other nonparametric tests also in-
 crease as assumptions are violated. When data are ranked, in-
 formation about the original distribution is lost; this decreases
 the power of nonparametric tests relative to their parametric
 counterparts. Substitution ofrankits for ranks restores the power
 of nonparametric tests to their original level prior to ranking
 (Bradley, 1968).
 Once data are converted to rankits, normal scores tests are

 simple to calculate. Because rankits are derived from the stan-
 dard normal distribution (mean = 0, standard deviation = 1),
 many elements of parametric test equations are dropped or
 simplified from normal scores tests (e.g., sum of all rankits from
 any number of observations is zero). Normal scores tests are
 easily performed with spreadsheets such as Excel and Lotus 1-
 2-3 on personal computers.
 Given their attractive qualities, one may question why normal

 scores tests have remained relatively obscure. Two reasons are:
 1) the function used to generate rankits is very complex, making
 it difficult to calculate values for parameters not previously pub-
 lished in tables (see Appendix 1); and 2) although relatively
 simple to perform, conversion of raw data to rankits with cor-
 rections for ties (Table 3) is cumbersome and time consuming,
 which has made it virtually prohibitive for large data sets.
 Recent advances in microcomputer technology and software

 provide viable methods for rankit calculation and substitution.
 Using a numerical approximation [see Equation (1) in Appendix
 1] derived by Harter (1961), rankit values can be efficiently
 calculated for any R (rank-order) and N (number of observations)
 with Mathematical, a program available for microcomputers
 (see Appendix 1). The program Rankit was written by the author
 to convert raw data matrices to rankit equivalents. Rankit reads
 raw data from a text file, obtains rankit values from either a

 TABLE 4-Explanation of variables and test statistics.

 Variables

 ENR = rankit value for the ith smallest observation
 Nt = total number of observations
 R = rank order of the rth smallest observation
 = number of observations in jth group
 d = difference between paired observations
 v = number of non-zero differences between paired observations
 k = number of groups
 D = difference in rankit means between ith and jth groups
 a = significance level (probability that null hypothesis is true)

 Test statistics

 X:
 S:

 D,:

 B:

 normal distribution (Zelen and Severo, 1965, table 26.1)
 Student's t-distribution (Zar, 1984, table B.3)
 Pearon's product-moment correlation coefficient (Zar, 1984,
 table B. 16)
 X2 distribution (Zar, 1984, table B. 1)
 S distribution (Klotz, 1964, table I)
 Critical difference between group means (function of t-distri-
 bution)
 normal scores correlation coefficient

 look-up file (for N < 81) or a file of rankits created with Math-
 ematicaG (for N > 80), substitutes rankits corrected for ties,
 and outputs a text file of rankits that can be imported into
 spreadsheets for analysis.

 The combination of Mathematicaf and Rankit provides a
 viable method for rankit conversion (see Appendix 1). Large
 data matrices can be converted to rankits in a matter of minutes.
 This makes normal scores tests accessible for routine use. Data
 can also be converted to rankits using a function call in SPSS
 and Van der Waerden scores, which are a function of normal
 scores, and can be obtained from both SAS and SPSS. Neither
 of these packages, however, provides normal scores tests.

 REVIEW OF NORMAL SCORES TESTS

 Normal scores tests are discussed by a number of authors
 (Bradley, 1968; Marascuilo and McSweeney, 1977; Conover,
 1980; Rock, 1988), but few examples of practical applications
 are available. The following review provides examples and dis-
 cussion for the most common normal scores test. The purpose
 of these examples is to provide models that readers can modify
 to suit their own needs. Data used here are from a morphometric
 data set compiled by Snyder (1991) and have been modified in
 some cases to exemplify better the nature of specific tests. There-
 fore, results are reported for instruction only and have no sci-
 entific value. Variables and test statistics are defined in Table
 4. Step by step procedural descriptions for performing each of
 the normal scores tests are provided in Appendix 2 for those
 who are not entirely comfortable with deciphering statistical
 equations. One should not, however, follow this cook book
 approach without an understanding of the test being performed.

 Before examples are presented, it is important to note that
 null hypotheses (e.g., no difference between the means of two
 populations) can never be accepted, because no two populations
 are identical (Foster and Kaesler, 1988). One can only reject or
 fail to reject a null hypothesis with a given level of confidence
 (probability of being in error). This principle is discussed more
 later.

 Van Eden test. -The Van Eden normal scores test evaluates

 whether a significant difference exists between a series of paired
 observations. This test can also be applied to determine whether
 the mean of a single group is different than a given value (Van
 Eden, 1963). Its parametric analog is the paired Student's t-test,
 and nonparametric analog is the Wilcoxon signed rank test. The
 test statistic Z is approximately normally distributed:

 (1)
 Z ENR,

 R=l 1Z

 As an example, a Van Eden test is applied to determine wheth-
 er a significant difference exists between the lengths of apertures
 paired across branches of the fenestrate bryozoan Rectifenestella
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 TABLE 5- Van Eden's normal scores test for differences between aperture
 lengths (in mm) of Rectifenestella tenax paired across branch
 (d = differences between left and right paired apertures).

 Rank Signed (Rank-
 Left Right d Idl Rankit rankit it)2

 0.0613 0.0567 0.0046 3.0 -0.729 0.729 0.531
 0.0667 0.0567 0.0100 7.5 0.343 0.343 0.118
 0.0667 0.0667 0.0000 * * * 0
 0.0817 0.0650 0.0167 11.0 1.586 1.586 2.515
 0.0733 0.0633 0.0100 7.5 0.343 0.343 0.118
 0.0614 0.0583 0.0031 2.0 -1.062 1.062 1.128
 0.0583 0.0667 -0.0084 6.0 0.000 -0.000 0.000
 0.0633 0.0767 -0.0134 10.0 1.062 -1.062 1.128
 0.0583 0.0633 -0.0050 4.5 -0.343 -0.343 0.118
 0.0583 0.0600 -0.0017 1.0 -1.586 -1.586 2.515
 0.0633 0.0500 0.0133 9.0 0.729 0.729 0.531
 0.0717 0.0767 -0.0050 4.5 -0.343 -0.343 0.118

 2 1.458 8.820

 Terry-Hoeffding test. -The Terry-Hoeffding normal scores
 test evaluates whether two groups have the same mean (Terry,
 1952). Its parametric analog is the unpaired Student's t-test, and
 nonparametric analog is the Mann-Whitney test. The test sta-
 tistic S is simply the sum of rankits for the population with
 fewer observations.

 (2) S = ~ ENR,
 i=l

 Critical S values for N < 20 are provided in Klotz (1964, table
 I, p. 655) and reproduced in Bradley (1968, table VI, p. 327).
 Three methods have been proposed for calculating critical S
 values when N > 20. All assume that n,/n2 and n2/N are not
 too small (but minimal sizes have not been proposed).
 Method 1: t-distribution with (N - 2) degrees of freedom.

 tenax. Twelve pairs of observations are taken (Table 5) and
 differences between pairs calculated. Absolute values of differ-
 ences are ranked (omitting observations with no differences) and
 rankits and their squares are obtained. Signs of rankits are
 changed to correspond to the signs of the original data. That is,
 in Table 5 rankits corresponding to all negative differences (high-
 lighted) are given negative signs and those corresponding to
 positive differences (not highlighted) are given positive signs,
 regardless of the original rankit sign obtained from the absolute
 values of differences.

 Using Equation (1), the test statistic Z is calculated:

 Z = 45 = 0.491
 /8~.8 820

 From a table of areas under the normal curve (cumulative prob-
 abilities), the normal deviate 0.491 corresponds to a two-sided
 probability ofP = 0.624. Therefore, the null hypothesis (H0: no
 difference between left and right paired apertures on R. tenax)
 is not rejected at the 0.05 significance level.

 A Van Eden test can also be used to determine if apertural
 lengths of R. tenax differ significantly from a given value (e.g.,
 an a priori critical size predicted from a hypothetical trophic
 structure). In this case, the critical value is paired with all ob-
 servations (i.e., replacing "right" column in Table 5), and the
 test is performed in the same manner as the paired group meth-
 od.

 (N - 2)S2

 T= \ ( n_N ~ (E NR,)2 -S2
 T = (nn2 [ (ENR)) - S2

 R=I

 Method 2: Critical S-value for a given a.

 N

 nn2 (ENR,)2
 Sc = rN-2 R

 N

 (3)

 (4)

 where r is the two-tailed critical value of Pearson's product-
 moment correlation coefficient.

 Method 3: Z is normally distributed for large N.

 S
 Z=

 nln2 ) (E NR
 N(N - I) R =l

 (5)

 As an example, a Terry-Hoeffding normal scores test is ap-
 plied to determine whether a significant difference exists in branch
 spacing (distance between branch centers) between two fenes-
 trate species, Rectifenestella tenax and Rectifenestella tenuissi-
 ma. Twelve observations are taken for both species (n, = 12,
 n2 = 12, N = 24), which are ranked as a common population
 (Table 6). Ranks are converted to rankits, and rankits and their

 TABLE 6-Terry-Hoeffding normal scores test for differences in branch spacing (distance between branch centers, in mm) between two fenestrate
 species.

 R. tenax R. tenuissima

 Orig. Rank Rankit (Rankit)2 Orig. Rank Rankit (Rankit)2
 0.447 7.0 -0.604 0.365 0.562 22.0 1.239 1.535
 0.433 5.0 -0.877 0.769 0.538 18.5 0.669 0.448
 0.347 1.0 -1.948 3.795 0.475 11.0 -0.156 0.024
 0.548 21.0 1.041 1.084 0.542 20.0 0.877 0.769
 0.425 3.5 -1.140 1.300 0.577 23.0 1.503 2.259
 0.518 15.5 0.316 0.100 0.439 6.0 -0.734 0.539
 0.518 15.5 0.316 0.100 0.538 18.5 0.669 0.448
 0.533 17.0 0.484 0.234 0.47 9.0 -0.370 0.137
 0.478 12.0 -0.052 0.003 0.425 3.5 -1.140 1.300
 0.508 14.0 0.156 0.024 0.413 2.0 -1.503 2.259
 0.473 10.0 -0.262 0.069 0.588 24.0 1.948 3.795
 0.450 8.0 -0.484 0.234 0.497 13.0 0.052 0.003

 2; -3.054 8.076 2 3.054 13.514
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 TABLE 7-Klotz normal scores test for equal variances of branch spacing
 (in mm) between two fenestrate species.

 Orig. Orig.-x Rank Rankit (Rankit)2 (Rankit)4

 Rectifenestella tenax
 0.447 -0.026 9.0 -0.370 0.137 0.019
 0.433 -0.040 6.0 -0.734 0.539 0.290
 0.347 -0.126 1.0 -1.948 3.795 14.400
 0.548 0.075 23.0 1.503 2.259 5.103
 0.425 -0.048 5.0 -0.877 0.769 0.592
 0.518 0.045 18.5 0.669 0.448 0.200
 0.518 0.045 18.5 0.669 0.448 0.200
 0.533 0.060 21.0 1.041 1.084 1.174
 0.478 0.005 13.0 0.052 0.003 0.000
 0.508 0.035 16.0 0.370 0.137 0.019
 0.473 0.000 12.0 -0.052 0.003 0.000
 0.450 -0.023 10.0 -0.262 0.069 0.005

 = 0.473 2 9.691 22.002

 Rectifenestella tenuissima
 0.562 0.057 20.0 0.877 0.769 0.592
 0.538 0.033 14.5 0.209 0.044 0.002
 0.475 -0.030 8.0 -0.484 0.234 0.055
 0.542 0.037 17.0 0.484 0.234 0.055
 0.577 0.072 22.0 1.239 1.535 2.357
 0.439 -0.066 4.0 -1.041 1.084 1.174
 0.538 0.033 14.5 0.209 0.044 0.002
 0.470 -0.035 7.0 -0.604 0.365 0.133
 0.425 -0.080 3.0 -1.239 1.535 2.357
 0.413 -0.092 2.0 -1.503 2.259 5.103
 0.588 0.083 24.0 1.948 3.795 14.400
 0.497 -0.008 11.0 -0.156 0.024 0.001

 J = 0.505 2 11.922 26.231

 squares are summed within species. The test statistic S is ob-
 tained using Equation (2), which is simply a summation of rank-
 its for the population with fewer observations (arbitrary in this
 example because n1 = n2).

 S = 3.054

 Because N > 20, the critical value of S is not available in the
 table published by Klotz (1964) and must be obtained by one
 of three methods.

 Method 1, Equation (3):

 (24 - 2)3.0542
 T= 1- 1.307

 (12)(12)21.590 - 3.0542
 24

 From a table of critical t-values, a value of t = 2.074 is obtained
 for a two-sided probability of 0.05. Because 1.307 is less than
 2.074, the null hypothesis (Ho: no difference in branch spacing
 between R. tenax and R. tenuissima) is not rejected at the 0.05
 significance level. In fact, 1.321 (critical t-value for two-sided
 a = 0.20) is greater than 1.307, which means Ho is not rejected
 even at the 0.20 significance level.

 Method 2, Equation (4):

 Sc= 0.404 (12)(12)(21.590) = 4.598
 24

 Because 3.054 (the Terry-Hoeffding S-statistic for this example)
 is less than 4.598 (critical S-value for a = 0.05) the null hy-
 pothesis is not rejected at the 0.05 significance level. In fact, the
 Terry-Hoeffding S is greater than 3.085, which is the critical
 value for a two-tailed 0.20 level of significance.

 Method 3, Equation (5):

 Z 3054 1.287

 24(24 - 1)21.590

 From a table of areas under the normal curve (cumulative prob-
 abilities) the normal deviate 1.287 corresponds to a two-sided
 upper tail of P = 0.198. Therefore, the null hypothesis is not
 rejected at the 0.05 significance level. Note, however, that by
 method three the estimated probability is less than 0.20, whereas
 by methods one and two the probability was greater than 0.20.
 This is because the normal approximation of method three im-
 proves as sample size increases. Methods one and two provide
 better estimations of critical values with intermediate sample
 sizes, as in this example. No minimal sample sizes have been
 proposed for method three, but the writer's experience indicates
 that method three provides comparable results when over 50
 observations are used. The weaker normal approximation with
 intermediate to small sample sizes raises questions as to whether
 a better test statistic may also exist for the Van Eden test and
 Klotz test under similar circumstances.

 Klotz test. -The Klotz normal scores test evaluates equality
 of variances between two groups (Klotz, 1962). Its parametric
 analog is the F-test and nonparametric analog is the Siegel-
 Tukey test. The Klotz test differs from other normal scores tests
 in that its asymptotic relative efficiency can be less than one.
 The A.R.E. of the Klotz test is one for a normal distribution
 and increases for distributions with small tails, but decreases
 for distributions with very large tails, such as uniform and Cau-
 chy distributions (Klotz, 1962). In the latter case, the Siegel-
 Tukey test is more appropriate (Bradley, 1968). The test statistic
 for the Klotz test is normally distributed for large N.

 N

 ni ni (ENR,)
 (ENR) N2

 N

 (6)

 n/ ,n2

 N(N- 1) i=1

 where ni is the number of observations in the smaller group
 (arbitrary in the following example because nI = n2).

 As an example, a Klotz test is applied to determine if the
 branch spacing of two species of fenestrate bryozoans have the
 same variance. Twelve observations are collected for both spe-
 cies and means within groups are subtracted from all observa-
 tions to produce equal group means of zero (Table 7). Deviations
 from group means are ranked as a common population and
 converted to rankits. Sums for the squares ofrankits and rankits
 raised to the fourth power are obtained for both groups. These
 values are used in Equation (6):

 11922 _ (12)(9.691 + 11.922)
 24

 V) (22 .002 26.231) (9.691 + 11.922)2
 24(24 - ) 24

 = 0.407
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 TABLE 8- Van der Waerden normal scores test for differences in branch spacing (distance between branch centers, in mm) between three fenestrate
 species.

 R. tenax R. tenuissima R. multispinosa
 j=1 j=2 j=3

 Orig. Rank Rankit (Rankit)2 Orig. Rank Rankit (Rankit)2 Orig. Rank Rankit (Rankit)2
 0.447 15.0 -0.245 0.060 0.562 34.0 1.462 2.137 0.520 28.0 0.714 0.510
 0.433 12.0 -0.466 0.217 0.538 30.5 0.961 0.924 0.454 18.0 -0.035 0.001
 0.347 3.0 -1.462 2.137 0.475 21.0 0.174 0.030 0.354 5.0 -1.140 1.300
 0.548 33.0 1.285 1.651 0.542 32.0 1.140 1.300 0.449 16.0 -0.174 0.030
 0.425 10.5 -0.586 0.343 0.577 35.0 1.704 2.904 0.414 8.0 -0.806 0.650
 0.518 26.5 0.586 0.343 0.439 14.0 -0.317 0.100 0.302 1.0 -2.118 4.486
 0.518 26.5 0.586 0.343 0.538 30.5 0.961 0.924 0.360 6.0 -1.016 1.032
 0.533 29.0 0.806 0.650 0.470 19.0 0.035 0.001 0.434 13.0 -0.390 0.152
 0.478 23.0 0.317 0.100 0.425 10.5 -0.586 0.343 0.350 4.0 -1.285 1.651
 0.508 25.0 0.466 0.217 0.413 7.0 -0.906 0.821 0.476 22.0 0.245 0.060
 0.473 20.0 0.104 0.011 0.588 36.0 2.118 4.486 0.416 9.0 -0.714 0.510
 0.450 17.0 -0.104 0.011 0.497 24.0 0.390 0.152 0.344 2.0 -1.704 2.904

 2 1.287 6.083 2 7.136 14.122 Z -8.423 13.286

 From a cumulative normal probability table, the normal de-
 viate 0.407 corresponds to a two-sided probability ofP = 0.684.
 Therefore, the null hypothesis (Ho: no difference in variances
 between the two groups) is not rejected at the a = 0.05 signif-
 icance level.

 Van der Waerden test. -The Van der Waerden normal scores

 test evaluates differences between multiple populations based
 on a single variable (Van der Waerden, 1952). Its parametric
 analog is the one-way ANOVA, and nonparametric analog is
 the Kruskal-Wallace test. The original Van der Waerden test
 was based on inverse normal scores, but McSweeney and Pen-
 field (1969) derived an equivalent test for rankits. The test sta-
 tistic is distributed as x2 with (k - 1) degrees of freedom:

 n -2

 X2 o(N - 1) k-
 X(k-\1) N - (7)

 (ENR,)2 nj

 As an example, a Van der Waerden normal scores test is
 applied to determine if a significant difference exists between
 the mean branch spacing (distance between branch centers) of
 three species of fenestrate bryozoans, R. tenax, R. tenuissima,
 and R. multispinosa. Twelve observations are taken for each
 species (n, = 12, n2 = 12, n3 = 12, N = 36), which are ranked
 as a common population (Table 8). Ranks are converted to
 rankits, and rankits and their squares are summed within spe-
 cies. The test statistic is obtained using Equation (7):

 2
 Xfk- )

 (36 - 1 (1.287)2 (7.136)2 (-8.423)2
 12 12 12

 (6.083 + 14.122 + 13.286)

 The test statistic (10.758) is much greater than the critical x2
 value for a probability of 0.05 (5.991). Therefore, the null hy-
 pothesis (Ho: no difference in mean branch spacing between the
 three groups) is rejected at the a = 0.05 level of significance.

 Post-hoc multiple comparison of means. -The normal scores
 post-hoc multiple comparison of means is used to test for sig-
 nificant differences between paired means in a multi-group sit-
 uation (Conover, 1980). Its parametric analog is the Student-
 Newman-Keuls test, and nonparametric analog is the multiple
 range test. If a Van der Waerden test proves significant, it is
 desirable to test means of groups pair-wise for significance. Crit-

 ical values for mean differences between groups i and j can be
 obtained with this equation:

 IEi,-Ejl > t,  1 8

 (8)

 where Ei is the average rankit value of group i and t, is the two-
 tailed critical t-value for a given significance level (a), with (N
 - k) degrees of freedom, and x2 is the Van der Waerden test
 statistic obtained from Equation (7).

 As an example, a post-hoc multiple comparison of means is
 applied to data from the previous example to determine if sig-
 nificant differences exist in branch spacing between pairs of three
 fenestrate species. First, a critical difference (Dc) is obtained
 using data from Table 8 and Equation (8):

 D - 2.035 \ 6.083 + 14.122 + 13.286 36- 1- 10.75
 - (36 - 1) 36 - 3

 x 2 + 12

 = 0.697

 Pair-wise differences between means are then compared against
 the critical value of 0.697 (Table 9). In this example, the same

 TABLE 9-Normal scores post-hoc multiple comparison of means for
 = 10.758 difference in branch spacing between three fenestrate species (data in

 Table 8). Asterisk denotes significance with a two-tailed probability
 of 0.05.

 R. tenax vs. R. tenuissima
 1.287 7.136

 = 0.487 < 0.697
 12 12

 R. tenax vs. R. multispinosa
 1.287 (-8.423)

 1.2- 12 = 0.809 > 0.697* 12 12

 R. tenuissima vs. R. multispinosa
 7.136 (-8.423)

 = 1.297 > 0.697*
 12 12
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 TABLE JO-Normal scores test for correlation between lengths (in mm) of left and right paired apertures of the fenestrate bryozoan Rectifenestella
 tenax.

 Rankit
 Left orig. X Rankit Xi (Rankit Xi)2 Right orig. Y Rankit Yi (Rankit Yi)2 (Xi(Yi)
 0.0613 -0.537 0.288 0.0567 -0.954 0.910 0.512
 0.0667 0.425 0.181 0.0567 -0.954 0.910 -0.405
 0.0817 1.629 2.654 0.0650 0.312 0.097 0.508
 0.0733 1.116 1.245 0.0633 0.000 0.000 0.000
 0.0614 -0.312 0.097 0.0583 -0.537 0.288 0.168
 0.0583 -1.179 1.390 0.0667 0.665 0.442 -0.784
 0.0633 0.000 0.000 0.0767 1.373 1.885 0.000
 0.0583 -1.179 1.390 0.0633 0.000 0.000 0.000
 0.0583 -1.179 1.390 0.0600 -0.312 0.097 0.368
 0.0633 0.000 0.000 0.0500 -1.629 2.654 0.000
 0.0717 0.793 0.629 0.0767 1.373 1.885 1.089
 0.0667 0.425 0.181 0.0667 0.665 0.442 0.283

 2 9.445 Z 9.610 1.739

 critical value is used for all comparisons because all groups have
 equal sample size.
 The null hypothesis (Ho: no difference in branch spacing) is
 not rejected at the 0.05 significance level for R. tenax versus R.
 tenuissima, but is rejected for R. tenuissima versus R. multispi-
 nosa, and R. tenax versus R. multispinosa. This suggests that
 there is a difference in branch spacing between R. multispinosa
 and both other species, but that R. tenax cannot be distinguished
 from R. tenuissima based on branch spacing.
 Normal scores test for correlation. -Bradley (1968) proposed
 a test for significant correlation between paired observations in
 a two-group situation. Its parametric analog is Pearson's prod-
 uct-moment correlation coefficient, and nonparametric analogs
 are Spearman's rho, and Kendal's tau. The normal scores cor-
 relation coefficient B is:

 N

 B = (ENR,) (ENR,) (9)
 i=1

 The test statistic for the hypothesis that Xs and Y's are uncor-
 related is distributed as t with (N - 2) degrees of freedom:

 N - 2 N-2

 T= B N -2 (10)
 \/ :( (ENR)2 - B2

 VR=1

 As an example a normal scores test for correlation is applied
 to determine if a significant correlation exists between the length
 of apertures paired across the branch of a fenestrate bryozoan,
 Rectifenestella tenax. Twelve pairs of observations are taken
 (Table 10), and rankits are substituted for data within groups
 (populations are not pooled for rankit conversion). The corre-
 lation coefficient B = 1.739 [calculated using Equation (9)] is
 used in Equation (10) to obtain a t-value.

 T= 1.739 5/9.4452- 7392 = 0.592

 The two-sided critical t-value for a = 0.05 with ten degrees of
 freedom is 2.228, which is much greater than the observed
 t-value of 0.592. Therefore, the null hypothesis (Ho: X and Y
 observations are uncorrelated) is not rejected at the 0.05 level
 of significance.

 Other normal scores tests. -Variations of the normal scores
 tests presented here have been developed (e.g., Fraser, 1957;

 Capon, 1961; Bradley, 1968; McSweeney and Penfield, 1969).
 Presumably, new normal scores tests can be developed (adapted
 from existing parametric and nonparametric tests) as need aris-
 es.

 SIGNIFICANCE LEVELS AND SCIENTIFIC CONCLUSIONS

 Throughout discussion in this paper, null hypotheses have
 been rejected or not at the a = 0.05 level of significance. This
 means that we are willing to accept a five percent rate of Type-I
 errors (rejecting a null hypothesis that is in fact true). It is im-
 portant to remember that there is nothing magical about the
 0.05 level of significance; in fact, the 0.05 significance level has
 its origins in gambling. The five percent level (20:1) was his-
 torically the odds at which bookmakers would shut down book
 on an event because the return on a winning bet was too small
 to attract interest from prospective betters on the favored side
 (a pay off of $1.05 for every dollar bet), and the bookmaker's
 commission on the transaction was too small to make it worth

 his time (A. W. Ghent, personal commun.).
 Obviously, small differences between levels of significance

 near the 0.05 level are of limited meaning. This becomes es-
 pecially clear when one examines the relationship between prob-
 abilities and sample sizes. The significance levels of tests gen-
 erally increase as sample sizes increase. For example, based on
 a sample size of N = 24, the probability that the two fenestrate
 species in the Terry-Hoeffding test example have the same branch
 spacing (distance between branch centers) is greater than 0.20.
 When 12 different observations are collected for both species
 (N = 24), the probability that there is no difference in branch
 spacing is also greater than 0.20 (data not presented here). When
 these two data sets are combined (N = 48), the probability that
 the two species have the same branch spacing drops to between
 0.10 < P < 0.05. Undoubtedly, if more observations were added
 to the analysis, the probability would drop below the a = 0.05
 significance level. The point being that no two populations are
 exactly the same, and given a large enough sample size and
 degree of measurement precision, statistically significant differ-
 ences can always be found (Foster and Kaesler, 1988).

 Given the last statement, one may question the value of sta-
 tistical tests. If, however, researchers weigh sample size and
 significance levels into final interpretations, relative levels of
 significance can provide a great deal of information. For ex-
 ample, the conclusion that one can draw from the results of the
 Van der Waerden test in this paper is that the relative difference
 in branch spacing between R. tenuissima and R. multispinosa
 is much greater than between R. tenax and R. tenuissima. It is,
 however, improper to conclude that there is no difference in
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 branch spacing between R. tenax and R. tenuissima, even though
 the null hypothesis was not rejected in this instance.

 Principles discussed in this section are well known, and there
 are many excellent reviews of hypothesis testing and significance
 levels (e.g., Sokal and Rohlf, 1981, section 7.8; Foster and Kaes-
 ler, 1988, section 2.2.4). Regrettably, however, scientific con-
 clusions are frequently made without consideration for effects
 of sample size.

 SUMMARY

 Normal scores tests provide practical methods for dealing
 with nonnormality and heteroscedasticity common in paleon-
 tological data. Despite their potential utility, normal scores tests
 have not received widespread acceptance as a common statis-
 tical method, primarily because the required rankit substitution
 is cumbersome and time consuming. Recent advances in mi-
 crocomputer technology and software provide a viable method
 for converting raw data to rankits. This makes normal scores
 tests, which are the most powerful nonparametric tests, acces-
 sible for routine use.
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 APPENDIX 1

 The equation for calculating rankit values:

 E(L (n - r)(r - ) (n - r)!(r - 1)!
 +00

 x [ [1/2 - W(U)]r- [1/2 + (wit)]n-r n(W ) dp

 where 4(0) = (27r)-'/2e- /2"2 and 4,(A) = f 0() d,
 *^

 (1)

 can be solved via numerical integration as outlined by Harter (1961).
 The method determines the solution for each n and r by writing Equation
 (1) in terms of logarithms:

 logeI(n, r, i) = logn! - log,(n - r)! - log(r - 1)!

 + log,e + (r - l)loge(l/2 - (bP())

 + (n - r)loge(l/2 + 4,(u))

 + lo0ge0()  (2)

 where I(2,r) = (2 ) e- '/2u2 and (#0) = f ( ) da

 Because I(n, r, m) - 0 when IiI > 7.60, E(r,,,), Equation (1) can be
 solved by summing the exponential of the right hand side of Equation
 (2) for , from -7.60 to 7.60 in steps of 6, and then multiplying the
 result by 6 (Harter, 1961). This generates values of E(,1r,) which are
 accurate to within a unit in the fifth decimal place.

 The procedure employed here, unlike that of Harter (1961), does not
 necessitate the input of tables into a mainframe computer in order to
 solve the problem. Mathematical, a program available for MacintoshS
 personal computers, can provide a numerical solution for this complex
 equation by utilizing a programming language with built-in mathemat-
 ical functions. The MathematicaS function used to solve Equation (1)
 is:
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 NormStat [n_, r_1:

 = Block [{4, 4, first, second, answer, I, t],

 -= (2.Pi) (- /2)*Exp[(- 1/2)-A 2];

 4 = Integrate [ A, {t,, 0, t}];

 4 = V/.t -> t;

 first = ((1/2) - 4);

 second = ((1/2) + 4);

 answer = Log[n!] - Log[(n - r)!] + Log[A]

 + (r - 1)*Log[first] + (n - r)*Log[second] + Log[4];

 Sum[Exp[answer], {(, -7.60, 7.60, 0.05}].0.05]

 A copy of Rankit can be obtained by sending a Macintosh-formatted
 or IBM-formatted 5.25" or 3.5" disk to S. J. Hageman. Information
 about MathematicaS can be obtained from: Wolfram Research, Inc.,
 P.O. Box 6059, Champaign, IL 61826-6059.

 APPENDIX 2

 This appendix provides step by step procedural descriptions for nor-
 mal scores tests discussed above. All descriptions include steps of rank-
 ing data and conversion to rankits. These steps are provided here to
 demonstrate how the test would be performed by hand, where rankit
 values are obtained from tables (e.g., Harter, 1961, table 1). When the
 computer program Rankit is used, it performs these steps and provides
 rankit values corrected for ties.

 Van Eden's test. -See text Equation (1) and Table 5.

 1. Paired data are collected and arranged in two columns aligned by
 pairs.

 2. The "Right" column is subtracted from the "Left," and results are
 placed in a new column "d."

 3. Negative differences in column "d" are noted and highlighted.
 4. Entries in column "d" are ranked by their absolute values and

 results are placed in a new column "Rank Id ." Note that entries
 with no difference (0.0000 in column "d") are dropped from the
 analysis at this point.

 5. Rankit values are determined for the entries in column "Rank I dl "
 and placed in a new column "Rankit."

 6. The signs of the entries in the "Rankit" column are changed to
 correspond to the sign of entries in column "d" (see step 3). These
 values are placed in a new column "Signed Rankit."

 7. Entries in "Signed Rankit" column are squared and placed in a new
 column "(Rankit)2."

 8. Sums are obtained for the "Signed Rankit" and "(Rankit)2" col-
 umns.

 9. The test statistic Z is calculated by taking the sum of the "Signed
 Rankit" column and dividing it by the square root of the sum of
 "(Rankit)2" column [see text Equation (1)].

 10. The test statistic Z is equivalent to a normal deviate for which a
 probability can be obtained from a table of the probability distri-
 bution of a normal curve (e.g., Zelen and Severo, 1965, table 26.1).

 Terry-Hoeffding test. -See text Equation (2) and Table 6.

 1. Unpaired data are collected for two populations (not necessarily same
 number of observations per population).

 2. Original data are ranked as a whole (both populations are pooled
 together) and results are placed in a new column "Rank."

 3. Rank values are converted to their rankit equivalents, which are
 placed in a new column "Rankit."

 4. Entries in the "Rankit" column are squared and the results are placed
 in a new column "(Rankit)2."

 5. The sums of the "Rankit" and "(Rankit)2" columns are calculated.
 6. The test statistic S [see text Equation (2)] is simply the sum of the

 "Rankit" column for the population with fewer number of obser-
 vations (arbitrary if population sizes are equal).

 7. Several methods exist for determining critical S-values.
 7a. Critical S-values can be obtained directly from a table (Klotz,

 1964, table 1) when the pooled population size is less than 21.

 If the number of observations is greater than 20, one of the
 following methods can be employed.

 7b. Critical S-values can be obtained using the Student's t-distri-
 bution [see text Equation (3)].
 7bl. The test statistic S is squared and multiplied by the total

 number of observations minus two.

 7b2. The sum of the "(Rankit)2" for population one is added
 to the sum of the "(Rankit)2" for population two. This is
 multiplied by the number of observations in population
 one and by the number of observations in population two.
 This value is then divided by the total number of obser-
 vations.

 7b3. The square of the test statistic S is then subtracted from
 the value obtained in step 7b2.

 7b4. A t-value is then calculated by dividing the value obtained
 in step 7bl by the value obtained in step 7b3, and then
 taking the square root of the results.

 7b5. The t-value obtained in the previous step is then compared
 to critical t-values from a table (e.g., Zar, 1984, table B.3).
 If the t-value is greater than the critical t-value at a given
 confidence level (with the total number of observations
 minus two as the degrees of freedom), then the null hy-
 pothesis is rejected.

 7c. Critical S-values can be obtained for a given confidence level
 using the Pearson's product-moment correlation coefficient [see
 text Equation (4)].
 7c1. Step number 7b2 is performed and the square root of the

 value is obtained.

 7c2. The value obtained in the previous step is then multiplied
 by the two-tailed critical value of the Pearson's product-
 moment correlation coefficient for a given level of confi-
 dence, which can be obtained from a table (e.g., Zar, 1984,
 table B. 16).

 7c3. If the test statistic S (step 6) is greater than the critical Se
 (step 7c2), then the null hypothesis is rejected.

 7d. For a large number of observations, a critical S-value can be
 obtained from the normal distribution [see text Equation (5)].
 7dl. Step number 7b2 is performed and the result is divided

 by the total number of observations in both populations
 minus one.

 7d2. The critical Z-value is obtained by dividing the test statistic
 S by the square root of the value obtained in the previous
 step.

 7d3. The test statistic Z is equivalent to a normal deviate for
 which a probability can be obtained from a table of the
 probability distribution of a normal curve (e.g., Zelen and
 Severo, 1965, table 26.1).

 Klotz test. -See text Equation (6) and Table 7.

 1. Data are collected for two populations, and means are calculated
 within each population.

 2. The within group means are subtracted from each observation and
 results are placed in a new column "Orig. - "

 3. Entries in the "Orig. - x" columns are ranked, with the populations
 pooled and results are placed in a new column "Rank."

 4. Ranks are converted to their equivalent rankits and placed in a new
 column "Rankit."

 5. Rankits are squared and raised to the fourth power to form two new
 columns "(Rankit)2" and "(Rankit)4," respectively.

 6. Entries in the "(Rankit)2" and "(Rankit)4" columns are summed
 within each group.

 7. The test statistic Z is calculated [see text Equation (6)].
 7a. The sum of the "(Rankit)2" column for population one is added

 to the sum of the "(Rankit)2" column for population two.
 7b. The results of step 7a are multiplied by the number of obser-

 vations from the population with fewer observations and divided
 by the total number of observations in both populations.

 7c. The results from step 7b are subtracted from the results of step
 7a [this forms numerator of text Equation (6)].

 7d. The results from step 7a are squared, and divided by the total
 number of observations in both populations.

 7e. The sum of the "(Rankit)4" column for population one is added
 to the sum of the "(Rankit)4" column for population two.
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 7f. The results of step 7d are subtracted from the results of step 7e.
 The result is then multiplied by the number of observations in
 population one and multiplied by the number of observations
 in population two. This result is then divided by the total number
 of observations in both populations, and then again divided by
 the total number of observations in both populations minus one.

 7g. The test statistic Z is then obtained by dividing the result of
 step 7c by the square root of the result of step 7f.

 7h. The test statistic Z is equivalent to a normal deviate for which
 a probability can be obtained from a table of the probability
 distribution of a normal curve (e.g., Zelen and Severo, 1965,
 table 26.1).

 Van der Waerden test. -See text Equation (7) and Table 8.

 1. Data are collected for three or more populations and placed in a
 column "Orig."

 2. Data are pooled and ranked as if they came from a single population.
 The rank order values are placed in a new column "Rank."

 3. Rankit equivalents are determined for the ranked data and placed
 in a new column "Rankit."

 4. Rankit values are squared and placed in a new column "(Rankit)2."
 5. Entries in the "Rankit" and "(Rankit)2" columns are summed within

 each group.
 6. The test statistic, which is distributed as Chi squared, is calculated

 [see text Equation (7)].
 6a. The sum of the "Rankit" column for population one (step 5) is

 squared and the result is divided by the number of observations
 for population one. This step is repeated for each population
 (e.g., "Rankit" sum for population two divided by the number
 of observations in population two, and for population three...).

 6b. The results for each population from step 6a are added together.
 6c. The sums of all the "(Rankit)2" columns (step 5) are added to-

 gether to obtain a total sum of rankit squares.
 6d. The test statistic is obtained by multiplying the results of step

 6b by the total number of observations minus one and then
 dividing by the results of step 6c.

 6e. The test statistic is then evaluated as x2 with the number of
 populations minus one as the degrees of freedom. This can be
 obtained from a table (e.g., Zar, 1984, table B. 1).

 Post-hoc multiple comparison of means.-See text Equation (8) and
 Tables 8 and 9.

 1. A critical difference (Dc) is obtained for comparison of mean values
 between populations, two at a time. Only one Dc is required when
 all populations have the same number of observations. The base
 part of Dc is calculated as follows.

 2. The two-tailed critical t-value for a given level of significance (based
 on the number of observations minus the number of groups as the
 degrees of freedom) is obtained from a table (e.g., Zar, 1984, table
 B.3).

 3. The sums of all the "(Rankit)2" columns (step 5 from Klotz test) are

 added together to obtain a total sum of rankit squares. This result
 is divided by the total number of observations minus one.

 4. The x2 test statistic, obtained from the Klotz test (step 7e), is sub-
 tracted from the total number of observations minus one. This result
 is divided by the total number of observations minus the number
 of groups.

 5. The results of step 3 are multiplied by the results of step 4.
 6. The basic part of the critical difference value Dr is obtained by mul-

 tiplying the critical t-value (step 2) by the square root of the results
 of step 5.

 7. For any given pair of observations the critical difference Dr is ob-
 tained by adding the inverse of the number of observations in the
 first group to the inverse of the number of observations in the second
 group, taking the square root of the sum, and multiplying it by the
 results in step 6.

 8. If the absolute value of the mean of group one minus the mean of
 group two is greater than the critical difference Dc (step 7), the dif-
 ference is significant for the confidence level chosen in step 2.

 9. If populations have different numbers of observations, steps 7 and
 8 are repeated for each pair-wise comparison of group means. If
 populations have equal numbers of observations, then the critical
 difference value Dc is calculated once in step 7, and step 8 is repeated
 for each pair-wise comparison of group means.

 Normal scores test for correlation. -See text Equations (9) and (10)
 and Table 10.

 1. Paired data are collected and placed in columns designated "X" and
 ,, y. ,,

 2. Data are ranked within each group (not pooled).
 3. Rankit values are obtained for entries within each group and placed

 in new columns "Rankit X," and "Rankit Yi."
 4. Entries in the "Rankit X," and "Rankit Y," columns are squared

 and results are placed in new columns "(Rankit X,)2" and "(Rankit
 Y,)2," respectively.

 5. Paired entries in the "Rankit X," and "Rankit Yi" columns are
 multiplied and results are placed in a new column "Rankit (X,)(Y,)."

 6. The normal scores correlation coefficient B is obtained by summing
 the entries in the "Rankit (X,)(Y,)" column [text Equation (9)].

 7. The normal scores correlation coefficient B is tested for significance
 using text Equation (10).
 7a. The result of step 6 is squared and subtracted from the square

 of the sum of the "(Rankit XJ)2" column.
 7b. The number of pairs of observations minus two is divided by

 the results obtained in step 7a.
 7c. The test statistic T is equal to the result of step 6 multiplied by

 the square root of the results of step 7b.
 7d. The two-tailed critical t-value for a given level of significance

 (based on the number of pairs of observations minus two as the
 degrees of freedom) is obtained from a table (e.g., Zar, 1984,
 table B.3).
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